1 The diagram shows a trapezium ABCD in which AB and DC are parallel.

AB = DB

Work out the value of x.

Give a reason for each stage of your working.

angle BDC =
$$180^{\circ}$$
 104° - 42°

= 34° (angle in a triangle sums up to 180°)

angle BAD = angle ADB = x° (because ABD is an isasceles triangle)

angle BAD = 180° - x° - 34° (because co-interior angle adds up to 180°)

 x° = 180° - x° - 34° (1)

 $2x^{\circ}$ = 146°
 x° = 73° (1)

x = **73**

(Total for Question 1 is 4 marks)

The diagram shows a parallelogram ABCD and an isosceles triangle DEF in which DE = DF

CDF and ADE are straight lines.

Angle $BCD = 58^{\circ}$

Work out the size of angle DEF.

Give a reason for each stage of your working.

angle ADC =
$$180^{\circ}-58^{\circ}$$

= 122° (1)

(co-interior angles add up to 180°) (1)

angle EDF = angle ADC = 122°

(vertically opposite angles are equal)

angle DEF = $\frac{180^{\circ}-122^{\circ}}{2}$ = $\frac{58^{\circ}}{2}$ (base angles in isosceres are the same)

= 29° (1)

(angles in triangle adds up to 180°)

Diagram **NOT** accurately drawn

ABC is a triangle.

D and E are points such that ACD and BCE are straight lines.

reflex angle
$$ABC = 298^{\circ}$$
 angle $ECD = 97^{\circ}$

Work out the size of angle x.

Give a reason for each stage of your working.

•
$$x = 180^{\circ} - 62^{\circ} - 97^{\circ}$$

$$= 21^{\circ} (1)$$
(angles in a triangle sums up to 180°)

x = 21

ABDE is a quadrilateral.

ABC is a triangle.

DCB is a straight line.

(a) (i) Work out the value of x.

$$x = 180^{\circ} - 125^{\circ} - 17^{\circ}$$
$$= 38^{\circ} \text{ ()}$$

$$x =$$
 (1)

(ii) Give a reason for your answer.

(1)

(b) Work out the value of *y*. Give a reason for each stage of your working.

(Total for Question 4 is 5 marks)

5 The diagram shows a square *ABCD* and a regular pentagon *CDEFG*.

Work out the size of the angle marked x.

angle DCB =
$$90^{\circ}$$

angle DCG = $\frac{5-2}{5} \times 180^{\circ}$ - interior angle of a pentagon

= 108° (1)

angle BCG = $360^{\circ} - 90^{\circ} - 108^{\circ}$ (1)

= 162° (1)

162

(Total for Question 5 is 3 marks)

Diagram **NOT** accurately drawn

ABCD and FGHI are parallel straight lines. EBGJ and ECH are straight lines.

$$BE = CE$$

Angle $BEC = 44^{\circ}$

Work out the size of angle JGH.

Give a reason for each stage of your working.

angle EBC =
$$\frac{180^{\circ} - 44^{\circ}}{1}$$
 = 68° (1)

(angles at the base of isosceles triangle are the same)

7 The diagram shows quadrilateral ABCD and isosceles triangle ADE, where AE = AD.

EDC is a straight line.

Work out the value of x.

Give a reason for each stage of your working.

ZADE =
$$\chi^{\circ}$$
 (the base angles of an isosceles angle are equal)

ZADC = $360^{\circ} - 115^{\circ} - 68^{\circ} - 59^{\circ}$

= 118° (i)

(angles in a quadrilateral sums up to 360°) (2)

ZADE = $180^{\circ} - 118^{\circ}$

= 62° (i)

(angles on a straight line sums up to 180°)

ABD is a triangle.

AEDF, BCDG and HCEJ are straight lines. BA is parallel to HCEJ.

Work out the size of the angle marked x.

ECD =
$$180^{\circ} - 143^{\circ} = 37^{\circ}$$

 $\chi = 180^{\circ} - 76^{\circ} - 37^{\circ} = 67^{\circ}$

Diagram **NOT** accurately drawn

In the diagram, *BCE* is a right-angled triangle. *ABCD*, *BEF* and *GCEH* are straight lines.

Angle $BCE = 35^{\circ}$

(a) (i) Find the value of x

$$x =$$
 (1)

(ii) Give a reason for your answer.

Vertically opposite angles are equal. 0

(1)

(b) (i) Work out the value of y

$$y =$$
 (2)

(ii) Give a reason for your answer.

Angles in a triangle add up to 180°. Angles on a straight line add up to 180°. (1)

(1)

(Total for Question 9 is 5 marks)

Diagram **NOT** accurately drawn

CDE is an equilateral triangle. *ABCF* is a quadrilateral.

BCE and DCF are straight lines.

(b) Work out the value of *y*You must show your working.

(Total for Question 10 is 3 marks)

11 *ABC* is a straight line and *BCD* is a triangle.

(a) Work out the value of x

$$x = 180^{\circ} - (180^{\circ} - 93^{\circ} - 42^{\circ})$$

$$= 93^{\circ} + 42^{\circ}$$

$$= 135^{\circ} (1)$$

PO, RO, SO and TO are four straight lines.

Diagram **NOT** accurately drawn

(b) (i) Work out the value of y

(ii) Give a reason for your answer.

(1)

12 The diagram shows triangle *ABD*

Diagram **NOT** accurately drawn

ABC, BDE and ADF are straight lines.

angle
$$CBD = 132^{\circ}$$

angle
$$ADB = 58^{\circ}$$

(a) (i) Write down the value of x

	6	
	Fo-	
	30	
		\ \ \ /
r =		
λ		

(ii) Give a reason for your answer.

Vertically opposite angles are equal ()

(2)

(b) Work out the value of y

(Total for Question 12 is 4 marks)

Diagram **NOT** accurately drawn

BCD is an isosceles triangle with BD = CD ABC is a straight line. ABDE is a quadrilateral.

Work out the value of *x* Give a reason for each stage of your working.

x =

(Total for Question 13 is 4 marks)

AB, BC, CD, DE and EF are five sides of a regular polygon.

RST, SCU and BCV are straight lines.

RST is parallel to CD

Angle $RSC = 128^{\circ}$

Angle $UCV = 32^{\circ}$

Work out how many sides the polygon has.

Show your working clearly.

$$180 (n-2) = 160 n$$

$$180 n - 360 = 160 n$$

20 n = 360

n = 18 (1)

18

(Total for Question 14 is 4 marks)

15 The diagram shows a pentagon.

Work out the value of x

- = 540 -411
- = 129

(Total for Question 15 is 3 marks)

16 The diagram shows a triangle *ABC* inside a semicircle.

Diagram **NOT** accurately drawn

A, B and C are points on the semicircle.

AB is the diameter of the semicircle.

Angle
$$ACB = 90^{\circ}$$

Angle $BAC = 50^{\circ}$
 $AC = 18 \text{ cm}$

Work out the perimeter of the semicircle.

Give your answer correct to 2 significant figures.

Give your answer correct to 2 significant figures.

$$\cos 50^{\circ} = \frac{18}{AB}$$

$$AB = \frac{19}{\cos 50^{\circ}}$$

$$= 29.0030$$

(Total for Question 16 is 5 marks)

17 The diagram shows two parallel lines AB and DEF

Diagram **NOT** accurately drawn

BEG is a straight line.

angle
$$DEG = 73^{\circ}$$
 angle $EBC = 124^{\circ}$ angle $ABC = w^{\circ}$

Work out the value of *w* Give reasons for each stage of your working.

(corresponding angles are equal)

w =

(Total for Question 17 is 4 marks)

18 The diagram shows quadrilateral *ABCD*

ECD, BCF and GAD are straight lines.

Work out the value of *x*

Give a reason for each stage of your working.

x = 117

19 The diagram shows quadrilateral ABCD

Diagram **NOT** accurately drawn

BC = CD = DBangle $DBA = 90^{\circ}$ and angle $DAB = 32^{\circ}$

(a) Work out the value of x

$$x = \frac{60 \text{ (1)}}{(1)}$$

(b) (i) Work out the value of y

(ii) Give a reason for your answer to (b)(i).

Angles	in (a triangle	add	up	to	180	(1)	 	 	
 								 	 (1)	

(Total for Question 19 is 3 marks)

20 ABCD is a trapezium.

Diagram **NOT** accurately drawn

BC is parallel to AD

Find the size of the largest angle inside the trapezium.

$$(4x-27) + (3x+46) = 180$$
 $7x = 180 - 19$
 $7x = 161$
 $x = 23$

$$ABC = 3(23) + 46 = 115$$
 $BAD = 4(23) - 27 = 65$
 $ADC = 3(23) + 10 = 79$
 $BCD = 180 - 79 = 101$

21 Here is a 9-sided regular polygon *ABCDEFGHJ*, with centre *O*

Diagram **NOT** accurately drawn

ODK and FEK are straight lines.

Work out the value of x

interior angle of polygon =
$$\frac{(9-2)(180)}{9}$$
 = 140°

EDK =
$$180^{\circ} - (\frac{140}{2}) = 110^{\circ}$$